• 2019-10
  • 2019-11
  • 2020-03
  • 2020-07
  • 2020-08
  • br M Li E A


    [32] M. Li, E.A. Czyszczon, J.J. Reineke, Delineating intracellular pharmacokinetics of paclitaxel delivered by PLGA nanoparticles, Drug Deliv, Transl. Res. 3 (2013) 551–561.
    A. Arjona-Sanchez, F.C. Munoz-Casares, LC-MS/MS quantitative analysis of pacli-taxel and its major metabolites in serum, plasma and tissue from women with ovarian cancer after intraperitoneal chemotherapy, J. Pharm. Biomed. Anal. 91 (2014) 131–137.
    [34] A.R. Rama, R. Hernandez, G. Perazzoli, M. Burgos, C. Melguizo, C. Velez, J. Prados, Specific Colon Cancer cell cytotoxicity induced by bacteriophage e gene expression under transcriptional control of carcinoembryonic antigen promoter, Int. J. Mol.
    D. Menon, Sequentially releasing dual-drug-loaded PLGA-casein core/shell nano-medicine: design, synthesis, biocompatibility and pharmacokinetics, Acta Biomater. 10 (2014) 2112–2124. [37] R. Contreras-Caceres, M.C. Leiva, R. Ortiz, A. Diaz, G. Perazzoli, M.A. Casado-Rodriguez, C. Melguizo, J.M. Baeyens, J.M. Lopez-Romero, J. Prados, Paclitaxel-loaded hollow-poly(4-vinylpyridine) nanoparticles enhance drug chemotherapeutic efficacy in lung and breast cancer cell lines, Nano Res. 10 (2017) 856–875.
    [40] P. Lopez-Gasco, I. Iglesias, J. Benedi, R. Lozano, M.D. Blanco, Characterization and in-vitro bioactivity evaluation of paclitaxel-loaded polyester nanoparticles, Anticancer Drugs 23 (2012) 947–958.
    [47] S. Luanpitpong, L. Wang, V. Castranova, Y. Rojanasakul, Induction of stem-like GW3965 with malignant properties by chronic exposure of human lung epithelial cells to single-walled carbon nanotubes, Part. Fibre Toxicol. 11 (2014) 22.
    [50] H. Wang, P. Agarwal, S. Zhao, R.X. Xu, J. Yu, X. Lu, X. He, Hyaluronic acid-deco-rated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for tar-geted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells, Biomaterials 72 (2015) 74–89.
    L. Teng, S. Xu, Enhanced antitumor efficacy of vitamin E TPGS-emulsified PLGA nanoparticles for delivery of paclitaxel, Colloids Surf, B. Biointerfaces 123 (2014) 716–723.
    [53] N. Desai, V. Trieu, Z. Yao, L. Louie, S. Ci, A. Yang, et al., Increased antitumor ac-tivity, intratumor paclitaxel concentrations, and endothelial cell transport of cre-mophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel, Clin. Cancer Res. 12 (2006) 1317–1324.
    D.E. Johnson, K.J. Edler, S.S. Gill, Convection-enhanced delivery of carboplatin PLGA nanoparticles for the treatment of glioblastoma, PLoS One 10 (2015) e0132266.
    C. Solans, PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier, J. Control. Release 211 (2015) 134–143.
    [56] H. Zhang, P.M. Dougherty, Enhanced excitability of primary sensory neurons and altered gene expression of neuronal ion channels in dorsal root ganglion in pacli-taxel-induced peripheral neuropathy, Anesthesiology 120 (2014) 1463–1475.
    M. Danso, A.M. Brufsky, M. Saleh, A. Clawson, C.A. Hudis, Phase II trial of weekly nanoparticle albumin-bound paclitaxel with carboplatin and trastuzumab as first-line therapy for women with HER2-overexpressing metastatic breast cancer, Clin. Breast Cancer 10 (2010) 281–287. [59] S.K. Adesina, A. Holly, G. Kramer-Marek, J. Capala, E.O. Akala, Polylactide-based paclitaxel-loaded nanoparticles fabricated by dispersion polymerization: char-acterization, evaluation in cancer cell lines, and preliminary biodistribution studies, J. Pharm. Sci. 103 (2014) 2546–2555.
    [62] F. Wang, Y. Shen, X. Xu, L. Lv, Y. Li, J. Liu, M. Li, A. Guo, S. Guo, F. Jin, Selective tissue distribution and long circulation endowed by paclitaxel loaded PEGylated poly(epsilon-caprolactone-co-L-lactide) micelles leading to improved anti-tumor effects and low systematic toxicity, Int. J. Pharm. 456 (2013) 101–112.